Расчет режима резания при черновом растачивании внутренней поверхности.
Исходные данные: d = 352,226 мм; Lрез = 18 мм.
Так как это черновая обработка, то глубину резания t назначаем 5 мм. Для растачивания используем резец из быстрорежущего сплава.
1. Длина рабочего хода суппорта: Lр.х. = Lрез + y + Lдоп
Lр.х. =27+11+0=38 мм [5, с.300].
2. Подача суппорта на оборот шпинделя: по [5, с.25] S0 = 0,4 мм/об.
3. Т – среднее значение стойкости инструмента, Т=47 мин [5, с.26].
4. Скорость резания при растачивании по[5, с.29], u = uтабл · К1 ·К2 · К3
Коэффициенты uтабл =30 м/мин, К1=1,0, К2=1,3, К3=0,85 приняты по [5, с.32], где
К1 – коэффициент, зависящий от обрабатываемого материала;
К2 - коэффициент, зависящий от стойкости и марки твердого сплава;
К3 - коэффициент, зависящий от вида обработки.
Тогда скорость резания J = 30 · 1,0 ·1,15 · 1,0=34,5 м/мин.
5. Число оборотов шпиндельного станка:
=31 об/мин. [5, с.14]
6. Расчет основного машинного времени обработки
tм===3,06мин.
7. Определение сил резания
Рz = Ртабл · К1 · К2 по [5, с.35].
Ртабл=500 кг; К1=0,9, К2=1,0
Где К1 - коэффициент, зависящий от обрабатываемого материала;
К2 - коэффициент, зависящий от скорости резания и переднего угла при точении сталей твердосплавным инструментом.
Рz = 500 · 0,9 · 1 = 450 кг
8. Расчет мощности резания
=2,5 кВт
9. Расчетная мощность станка
кВт
Где: h=0,8 – КПД станка.
Мощность станка паспортная (Nст п=11,2 кВт) больше мощности станка расчетной (Nст р=3,125 кВт), следовательно токарный станок полуавтомат 1А73ЧН047 подходит для выполнения этой операции.
10. Определение основного времени резания при растачивании:
мин.
Расчет режима резания при черновом точении торца.
Исходные данные: d = 416,3 Lрез = 34,65 мм.
Так как это черновая обработка, то глубину резания t назначаем 2 мм. Для точения используем резец из быстрорежущего сплава.
1. Длина рабочего хода суппорта: Lр.х. = Lрез + y + Lдоп
Lр.х. =34,65+3+0=37,65 мм [5, с.300].
2. Подача суппорта на оборот шпинделя: по [5, с.25] S0 = 0,6 мм/об.
3. Т – среднее значение стойкости инструмента, Т=100 мин [5, с.26].
4. Скорость резания при растачивании по[5, с.29], u = uтабл · К1 ·К2 · К3
Коэффициенты uтабл =26 м/мин, К1=1,0, К2=1,0, К3=1,05 приняты по [5, с.32], где
К1 – коэффициент, зависящий от обрабатываемого материала;
К2 - коэффициент, зависящий от стойкости и марки твердого сплава;
К3 - коэффициент, зависящий от вида обработки.
Тогда скорость резания J = 26 · 1,0 ·1,0 · 1,05=27,3 м/мин.
5. Число оборотов шпиндельного станка:
=20,87 об/мин.
6. Расчет основного машинного времени обработки
tм===3,01 мин
7. Определение сил резания
Рz = Ртабл · К1 · К2 по
Ртабл=270 кг; К1=0,9, К2=1,0
Где К1 - коэффициент, зависящий от обрабатываемого материала;
К2 - коэффициент, зависящий от скорости резания и переднего угла при точении сталей твердосплавным инструментом.
Рz = 60 · 0,9 · 1 = 243 кг
8. Расчет мощности резания
=1,08 кВт
9. Расчетная мощность станка
кВт
Где: h=0,8 – КПД станка.
Мощность станка паспортная (Nст п=11,2 кВт) больше мощности станка расчетной (Nст р=1,35 кВт), следовательно токарный станок полуавтомат 1А73ЧН047 подходит для выполнения этой операции.
10. Определение основного времени резания при растачивании:
мин.
Таким образом, произведена оценка технологичности, разработан маршрут механической обработки обода маховика, подобрано оборудование, рассчитаны нормы основного времени резания.
Расчет площадей
Площади разборно-моечного, агрегаторемонтного и ремонтно-монтажного участков определим по формуле Sуч=A+B·Tг. уч где Тг.уч – годовой объем работ на участке, ч; А – коэффициент, учитывающий долю площади, не изменяющейся с увеличением объема работ, м2; В-коэффициент, учитывающий долю площади, изменяю ...
Нормирование технологических операций
При сравнении технологических процессов ремонта оси необходимо определить их экономическую целесообразность, для чего применяется экономический анализ технологических процессов. Базовым вариантом является ручная дуговая наплавка, предлагается заменить ее автоматической наплавкой под слоем флюса. Дл ...
Расчёт магнитных напряжений участков магнитной цепи
Воздушный зазор Магнитная индукция в воздушном зазоре Тл. Магнитное сопротивление воздушного зазора , где kδ – коэффициент учитывающий зубчатое строение якоря; – эквивалентный воздушный зазор; , см. Принимаем = 0,35 см. , где t1 – зубцовое деление, см; bz1 – ширина зубца на поверхности якоря; ...